IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Degeneration through coalescence of the g-Painlevé VI equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 3545
(http://iopscience.iop.org/0305-4470/31/15/018)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 02/06/2010 at 06:34

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 3545-3558. Printed in the UK PIl: S0305-4470(98)86525-6

Degeneration through coalescence of thg-Painleve VI
equation

B Grammaticog, Y Ohtaf, A Ramang and H Sakadj

1 GMPIB (ex LPN), Universié Paris VII, Tour 24-14, $étage, 75251 Paris, France

i Department of Applied Mathematics, Faculty of Engineering, Hiroshima University,
1-4-1 Kagamiyama, Higashi-Hiroshima 739, Japan

& CPT, Ecole Polytechnique, CNRS, UPR 14, 91128 Palaiseau, France

| Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606, Japan

Received 7 August 1997, in final form 24 November 1997

Abstract. Starting from theg-discrete form of the Painlév VI equation we obtain its
degenerate forms by applying the procedure of coalescence of singularities. The whole cascade
of degenerate forms is thus obtained leading to new forms for the discrete RaiWleand V
equations. The Lax pairs of these discrete Pamleguations are explicitly constructed, thus
confirming their integrability.

The discovery of thej-discrete form of the PainlévVI equation by one of us (HS) in

collaboration with Jimbo [1] has filled a gap in the domain of discrete Pa&ndzuations

(P's). With this discrete equation available, we were (at last) able to produce a discrete

form for every single one of thé's. However, the importance of this mapping goes beyond

the domain of pure taxonomy of the discréts. The fact that this equation is gf-type

rather than of difference type (with the independent variable entering in a multiplicative

rather than in an additive way) makes it a realization af-&arnier system [2] (in fact,

the simplest, non-trivial one). Despite the fact that the discovery-B§, is very recent,

this equation has already been the object of several detailed studies. In [1] the linearization

of this equation was presented through the explicit calculation of the corresponding Lax

pair. In [3] the relation of this equation to the ‘asymmetigeP,, has been established and

the Schlesinger transforms of bajhP,, andg-Py, were derived. The special solutions of

g-Py in the form of a Casorati determinant of hypergeometric functions were given in [4].

Finally, in [5] the unified description of-Py, and its Schlesinger transformations (what

two of the present authors [6] have dubbed the ‘Grand Scheme’) was presented. In this

approach the bilinear form af-Py, is given in terms of a single-function that lives in a

five-dimensional lattice. The dynamic equation has the form of a (non-autonomous) Hirota—

Miwa equation and describes the evolution in the direction of the independent variables as

well as in the direction of the parameters (under the action of the Schlesinger transforms).
In this paper we shall present yet another application ofqtt&, equation. It is in

fact known that the Painlé@vequations can be used in order to produce more equations of

the same kind. Some of the procedures are already known for the contiffig{i, 8]:

their Schlesinger transforms can define mappings that are nothing but diftsetdt

goes without saying that this approach can be (and has been [9]) extended to the discrete

case in a straightforward way. Some procedures are characteristic of the discrete ones: the
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degeneracy concept we introduced in [10] is such an example. In this approach one considers
the autonomous limit of the discref® introduces some assumption of factorization and
simplification, and then deautonomizes the obtained form. Finally, some procedures are
from the outset common to both continuous and discBse In this class we find the
procedures based on limits or coalescences. The latter, which will be at the core of this
paper, obtain degenerate (or, equivalently, non-generic) forritssahrough a coalescence
of their singularities. (This, of course, explains the title of the paper. However, we must
point out that at least two of us (BG, AR) use the not quite appropriate term ‘coalescences’
to denote the degenerate forms themselves. This terminology has the merit of avoiding
confusion with the above-mentioned degeneracy concept).

Both continuous and discrete Pairdeequations are linked through a coalescence
cascade in the following pattern:

Ps — Py — {Pv,Pu}— P — P.

In the case of discrete equations the coalescence process is particularly interesting since
there exist several forms for each discrBt@.e. several discrete equations having the same
P as continuous limit). Thus, this method can be used in order to generate &y b
what follows we shall explore systematically the degeneration through coalescené®of
We start from they-discrete form of the PainlévVI equation:

G- —b)
= LT oG - 1o (12)
= -0 —9q) (1b)

(y—=r)(y—=1/r)

wherey = y(n), y = y(n + 1), y = y(n — 1) (similarly for z) anda = ap)", b = bo)",
p = por'tY2, g = goA"*tY2. The quantities:, r are constant and, moreover, the following
constraint must holdagbg = pogo. The first coalescence is introduced through the change
of variabley = 1+ §n and the limité — 0. The parameters of equation (1) are also
transformed:ag = ¢(1+ 8a1), bo = (14 8b1)/c, po = 1+ 38p1, go = 1+ 8q1, r = 1+ 6r1.
The new independent variable js= ni; wherei = 1+ §A;. We thus find
¢ +ar .+ by
zfjc—1 c¢z—-1

= n—¢—p)(n—1§¢—q1) (2b)

(n—r)(m+r)

where the ‘tilde’ means a shift by half a lattice spacing. The constraint how becomes
a1+ by = p1+ q1. Equation (2) is a discrete form of the PairdeV equation. This can be
verified by considering the continuous limit of (2). We put= ¢ and at the limitt — 0
the independent variable goes over ta. We haven = —t/(z — 1) + ew. The parameters
a1 = €a, by = €B, p1 = €¢, g1 = €Y, r1 = €p andc = 1+ ey satisfy the constraint
o+ B = ¢ + . The resulting equation far is precisely R:

" 1 1 2 Z/ ZZ(Z_l)Z
= —_ - — 2 o 7
Z (2Z+Z_1>z t+'0 2

(¢ —¥)* (z—-17? z ,2(z+ 1)
— -2 —B)- — 2y ——.
> 2 vle—p) -2y —— 3
From d-R, we can obtain a form of d. We putz = x /& and similarly for the parameters
c =38 anday = ay/8%. At the limit 8§ — 0 we obtain

as L+ by
n+n=-——--—-—-
x x-1

n+n=-— (28)

(42)
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W—C—Zpl (4b)

XX = —az
772—}’1

with the constrainy; = a; + by — p1. Equation (4) is indeed a dyPas can be assessed
by its continuous limit. Puttingg = —a/en + w, ¢ = a(1l/€ + 1), anda; = a /€, by = €8,
p1 = 0 andr; = ¢p we find (at the limite — 0)

22 3 O[2t2 2 2.2
77”:”—+—173—201t772+ — 4208 +a)n— sl (5)
2n 2 2 n
which is precisely R. The two forms of d-R and d-R, are obtained here for the first

time.

As is well known, d-R has another coalescence leading to,d-FFrom (2) we can
perform this limit by puttingz = 1 + §¢ while the independent variable becomes= §s.
The parameters of the equation are also transformee: Sas, b1 = —8asz, p1 = 1+ p»,
g1=—-1—368p2,c =146, r1=1. Inthe limits§ — O we obtain

25& + 2a3

77+Q—l_—$2 (6a)
- Xn+2

ErE=—1" " (6b)

Equations (6) are indeed a discrete form of the Pailévequation. We have first obtained
this equation in [11], where we have also given its continuous limit and its Lax pair. The
study of its Schlesinger transformations in the framework of the ‘Grand Scheme’ [6] was
presented in [5].

Both d-Ry and d-R, have coalescences that lead to,d-RVe start with d-R in the
form (4) and puty = 1+ 80 and x = 1+ dw/2. The independent variable now becomes
¢ = 8%t/2. Moreover, we transform the parameters through= —2 — 8as, b1 = §%b5/2,
p1 =14 68?p3/2 andr; = 1. We thus find (at the limis — 0)

b
9+Q=a4—a)—1+ 2 (7a)
w
w+a)=a4—9—%. (7b)
Similarly, from d-R;, we introducen = 146860, ¢ = 1+ 8w, s = —2 — das + 8°t,

az = 2+ 8as + 8%b, and p, = 2 + das + 8%p3, and we obtain the same g-Pequation (7).

The latter is an equation already obtained in [12] as the asymmetric form pf ldsR_ax

pair was first derived in [13]. We can easily show that this equation is in fact a discrete
form of B;. Puttingw = 1+ ew + €2p, 8 = 1 — ew + €2p (with p = (w? — w' —1)/4),
andas = 2, by = —€3a, p3 = €3a andt = —1 — €% we find (at the limite — 0)

w” = 2w + 2wt + 4o — 1. (8)

At this point it would seem that a way to proceed in order to obtain g fdm (7)

would be through a symmetrization. However, this is not the proper coalescence procedure.
A different approach is based on the relation of the disciéte to the Schlesinger
transformations of the continuolss. Thus one would expect dyPwith have two different
degenerations associated with two distinct coalescence patterns, sipcésddtated to R

which has degenerations to both Rnd R, [14]. One of these degenerations was given
above, leading to the dyP(7) itself related to . The second one can also be found.
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Indeed, puttingy = r1 + 8y, x = 8x, ¢ = 8(z+ ), p1 = r1 — 8, ap = —28°r1 and
by = 2r1, we find in the limité — 0

1
y~|—z=2r1()—c+x>+z+li (92)

xi=1-Z%. (9b)
y
These equations, rewritten in termsxobnly, were first obtained in [7] and studied in detalil
in [15]. They are known under the name of the alternater&guation.

Following the same spirit (the relation betweer'd-and continuoud’s), we expect
both d-R’s, namely (7) and alternate-drR9), to have a common degeneration through
coalescence to a d-Related to continuous,P In the case of alternate-drfhis degeneration
is known under the name of alternate-dfP, 15]. Indeed, starting from (7) we takg = 2,
w=1+68X,1=1258%Z,0 =48%Y, p3=0 andb, = 1 — §2K, and obtain at thé — 0 limit

— Z
X+X=-3 (10a)
Y+Y=K-—X2 (10b)

Similarly, we obtain the same equations from (9) through- 1+ 38X, y =Y, z = §Z,
r1=1/28> andu = K — 1/82.
Let us summarize the degenerations through the coalescence casecaBg, of
Py — d-RR — d-BRy — alt-d-R

! J !
d-By — d-BRy — alt-d-R

The pattern is richer than that for continuoug Because the discrete (difference) equations
partake of both the continuous and the discrete world.

All the equations that we have derived above are integrable. This can be assessed
through the coalescence procedure since they are all degenerate fogid,of They all
satisfy the singularity confinement criterion [16]. Finally, they do possess Lax pairs which
(for simple readability reasons) are presented in the appendix.

In this paper we have presented the degeneration-B, through a process of
coalescence of singularities and obtained the Lax pairs of the resulting equations. The
forms of the Lax pairs, and in particular the data of singularities, help us understand the
coincidence of the discrete Pain&eequations with the Schlesinger transformations of the
continuousP’s (a point that establishes the relation of this work to that of Jimbo and Miwa
[8]).

The forms of d-R and d-R, are quite new. In the case of d-R is interesting to point
out that the same equation has just been obtained [17] in a totally different setting (starting
from the similarity reduction of the lattice mKdV equation). This is the first time that a Lax
pair has been obtained for a form of ¢-Bnd d-R,. For instance, none is known for what
are considered the ‘standard’ formsgf, and d-R,. (But, to be fair, we must stress the
fact that these mappings are symmetrized forms of richer equations that might correspond
to higher discrete Garnier systems.)

The fact thatg-Py, is a g-discrete equation and its relation ¢ePy, indicate other
possible paths of investigation. In [10] we have studied in detail the discrete forms obtained
from ¢-P;,, by methods other than degeneration through coalescence. Their richness is most
promising since the same procedure applied;iBy, would lead to novel equations, in
particular ofg form.
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Appendix

In this section we shall present the results for the Lax pairs of the equations resulting from
the degeneration aj-Py,. For completeness reasons, we start by recalling the Lax pair of
g-Pyi (which was already been published in [1]).

A.1l. Lax pair forg-Py;

The basic equations are

_ A(x,t)
N iy e () (A1)
with
(k= ) — )+ 2) k2w (x — y)
A1) = ( w lpx+8) kol — )(x — B) + Z2)>
Y(x,qt) = B_(x—’:a)zY(x, 1) (A2)

B(x,1) = xI + Bo(?).

The matrixBo(t) = (B;;) is parametrized as follows:

—qK2Z t(ay +az) —
B1 = = <—,3 + —_y>
1—«koz K2Z
— = t Y
Byy— 49T (_& N M)
1-gr1z gKiz
qraz
Bio= ——
=9 K27
K1Z _ ta, —y ta, —
321=—q1 — <qta1—a+—q 2_y>(ta1—ﬂ+ 2_y>
w(l—gk12) qK1z K2Z
K12 _ tag —y ta, —
:q—l_(qtaz—a—i-u)(taz—ﬁ—i- 1_y>.
w(l— gk1Z) qK1z K2Z
Here
o= [y 201 + 02t — K121 — K222) — ka((a1 + a2)t + ag + ag — 2y)]
1— K2
B = p— [y (01 + 020t — k121 — K222) + K1((a1 + a2)t + az + as — 2y)]
1— K2

y=2u+2+0+a)(y+p)+ (@+ By —awasn? — (a1 + az)(az + aa)t — azas
8 =y Harazazast® — (ay + z1)(By + 22))
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and
_ O —ta)(y —taz)
gKiz
The compatibility condition
A(x,qt)B(x,t) = B(gx,t)A(x, 1)

leads tog-Py,

21 22 = qk1(y — az)(y — as)z.

yy  (Z—1th)(z —1tbhy)
azas (2 —b3)(Z — by)

2z (y—ta)(y —tap)
bsbs (v —a3)(y —as)
b byZ—by

w _b32—b4

where
1 1
by = B8R by = B2 by = — by = —.
61 0, gK1 K2

A.2. Degeneratiog-Py; — d-Py
We adopt the normalization
a; a az dag a 1/a c 1/c
(bl bz b3 b4> = (l/@ 0 l/CIK K )
91 92 K1 K2 0 1/9 K 1//(

The equation d-P is obtained through = p=~* w = 1 — p*°, a = p®/c, k = p*°,
0=ph qg=pt=ps (=ni)ands =1— p — 0 (and elimination ofw, through
gauge transformation),

%Y(x,n) = A(x,n)Y(x,n) (A3)

Y(x,n+1) = B(x,n)Y(x, n) (A4)
where

Alx,n) = A—O + A% + A

Ax  Ax—c) Alx—1/c)
with
A} = —zi ((Zo —ko)(y —1/c) — d +a0) ((zo — k0)(y — ¢) — ¢(& — ao))
Ko C

(6o + ao) (6o — ao)
2KQ

) ((zo — ko) (y — ¢) — c(¢ — ao))

(6o + ao) (6o — ao)
2KQ

1
+§(Zo+§ + ko — 2ag) +

¢ +ao

1
A, = 2% <(Zo —ko)(y — 1/c) —

1
—E(Zo+§ + ko + 2ap) —

¢+ ao
¢

1
A = ——[ ((zO —Kko)(y — 1/c) —

4K§y

) ((zo — ko) (y — ¢) — c(¢ — ap))
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—k0(z0 + &) + (ao — ko + 6o) (ao + ko — 90)]

¢ +ao

X [ ((ZO —ko)(y — L/c) — ) ((zo = k0)(y — ¢) — c¢(¢ — ag))

—k0(z0 + &) + (ag — ko — 6p)(ao + ko + 90)]

2k0(c — D(c+ 1)y

+ ((Zo —Kko)(y — 1/c) —

Afj=ao—¢ |:(ao — ko + 600)(ao — ko — o)

¢ +ao
C

> ((zo — ko) (y — ¢) — ¢(¢ — 20 — ao))

A}, = y ¢
2=
2k0(c — D(c+ 1)y

|:(ao — ko + 60o)(ao — ko — o)

+ (<zO —ko)(y — 1) — £ “°> (20— ko) (y — €) — (¢ + 2¢0 — dg))
+ _ y—¢
ALz = (c—=Dc+1)
L e—De+D ,
Ay = T AD Az

e - =10
17 2%0(c — D)(c + 1)y

+ ((Zo —Kko)(y — 1/c) —

Ay — 1/c)

|:(ao + ko + 6o)(ao + ko — o)

. ]
m> (20 — k0)(y — &) — (¢ — ap))

Ap=ao+§— Zeoc — Dic + 1)y [(ao + ko + o) (ao + ko — 6o)
o ]
+ ((ZO ko) (y — 1/c) — m> ((z0 — ko) (y — €) — ¢(Z — ag))
__ Fy Yo
27 c—Dc+D
_ =D+

ZI_W 114422
and
A°°=—A°—A+—A_:<_KO O).
0 Ko

The eigenvalues oA®/A are(—ao+6p) /A, (—ap—6o) /A, and those ofi* /) are 0,(ap/1)Fn.
The matrixB is given by

1
[(zo+ ¢ +60)(z0 + ¢ — 00)y ™" — (20 + ko) (zo + ¢ — ko + ag)c™*

By = PP
—(z0 + Kk0)(z0 — ¢ + ko — ag)c + (20 — ko) (2o + ko) Yy
+2k0(Zo + ko + ) (x — ct—c+ ]
By = - [2160(20 — ko)X — (ao + 6o)(ao — 6o) — ko(Zo + ¢ — ko)
yx—o¢)

¢ +ag

- <(Zo —ko)(y —1/c) - ) ((Zo— ko) (§ — ¢) — ¢ — ao))}
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2K 0

xX—c
B2 |:(Clo + ko + 0o)(ap + ko — 6p)

E+2K0+ao>
C

~ 200y5(x —c)

+ ((Zo —Kko)(y — 1/c) — ((Zo — k0)(F — ¢) — (¢ — ap))

X |:(Clo — ko + 6o)(ao — ko — Oo) + 2(Zo — 20+ A)(y — ©)

— 2
+ ((10 +x0)(y — 1/c) - @)

((zo + ko) (y —¢) — (& —ao)) |-

The compatibility condition
d
aB(x,n) =A(x,n+1)B(x,n) — B(x,n)A(x, n) (A5)

leads to d-R in the form
{+a  C—ao
yve—1 y/c—1
(Zo+ ¢ +60)(Zo + ¢ — 6o)
(zo — x0)(Zo + A + ko)

Zo+tzo+tA=

yy =

A.3. Degeneration d-P — d-P;y

To get d-R,, we need a change of variahle— x/c¢ and a gauge transformation. This
is obtained throughh — n + B/A + 872y1/2A, y = y1/8, ¢ = 8, 6o = 8§ %1/2,
ag=o1— p1— 3_2)/1/2 ands — 0.
The system of deformation equations is (A3) and (A4), where
0,2 AO Al

A e T
(x,n) 2t t YO
with
! (a1 — B1+ ko)
A2 = 2 (20— k)31 — 1) — ¢ — an)((z0 — Kko)ys — 1) — LA Prt o)
ZKO ZKO
L (a1 — B1— ko)
A%2 =~ = (20— k)31 — 1) — £ — a1)((z0 — Kko)yr — 1) + LRAA—PATKO)
2K0 2K0
Al =—n
1
02 02402
Azl = — A Ay
Y1
1 n-1
A = — > [((zo — ko) y1 — 20 — £ — a1 — ko) ((zo — ko) y1 — Y1) — Y11 — B1 + k0)]
Koyl
-1
Az = );K [((zo — ko) y1 — 20 — £ — o1 — k0)((zo — ko) Y1 — Y1) — Y1(1 — B + k0)]
o1
+a1+¢
Ap=yn-1
1
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A= _ptq(r0 O and  A®=_A0_at—( K0 O}
0 —«xo 0 Ko

The eigenvalues aA*/x are 0,(ax1/A) +n, and those ofA%?/x are 0,—(y1/1). WhenA®?2
is diagonalized by a gauge transformation withas

1,402 _(—n/~ 0
1A C/x_( : 0)

the diagonal parts of ~*A°C/x are

(—ﬂl/k —n * )
* Br—a)/r )’

The matrixB is given by

1
B11 = ;[Vl(ZO + ¢+ B0yt — (20 + ko) (zo + ¢ + a1+ y1 — ko) + (20 — ko) (20 + ko) y1
+2k0(Zo + ko + A)(x + y1 — D]

((Zo—Kko)(F1— 1) — ¢ — 1) ((Zo — ko)I1 — ¥1) — v1(er — P1 — ko)
X

Boy = 2x0(zp — ko) —

B1o = =29

1 -1
Bo1 = ———[v1(z0+ ¢ + BDy1
191

2uchy
—(z0 + ko) (zo + ¢ + a1 + y1 — ko) + (2k0(Zo + 1) + 20° + ko) y1]
x[((Zo — ko)¥1 — Z0 — ¢ — a1 — ko) ((Zo — ko)¥1 — ¥1) — valar — B1 + ko)].

The compatibility condition is (A5), and we obtain the following expression fold-P

n—1 »n
y1(Zo+ ¢ + Bo)
(Zo—Kk0)(Zo+ A + ko)

_ + o
Totzotr= AN

yiyy =

A.4. Degeneration d-p> — d-P;;;

To obtain d-R;, we need a change of variahle— 1 4 §x and a gauge transformation.
This is obtained througly = 1+ 8yg, A = 8Ao (s = nig), ¢ = 1+ 6, ko = 1, ap = Say,
6o =1—68Bg ands — 0. The system of deformation equations is (A3) and (A4), where
A2 At A
+ +
Ao bo(x = 1) = Ao(x +1)

w2 (1 0
=6 %)

Alx,n) =

. _1+s+ﬂo 280 + 200 B 1
A= Qo= D00+ D [T Ty 11T (- Do+ D w1
2 4 § 0
A —zo+1—
21 20+ Yo—1
with

2
A§1=(YO—1)(10—1+S—H30+ Po + 200 )(Zo— s+ﬂ0)

yo+1 (o—-Do+1
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— +1_S+’30 L
4o Go=DGo+D [ 7 vo+1 Yo+ 1
2 _ s+ Bo —2B0 + 200
A21 zo0—1+
Yo—1 (o—D(o+1

_ s+ Bo —2B0 + 2a0 s+ Bo
Az = —( +1)(z—1+ + 14
21 = T 0 vo—-1" Go—DGo+D )\ Yo+l

o — 1
AOO=_A+_A—= ﬂo ao
( A% Bo — ag

A5 = ((zo— Dyo + s + Bo)((zo — Dyo+ s — Bo) — (z0 — D(z0 — 200 — 1).
The eigenvalues oA* /1q are 0,(ao/Ao) F n. The matrixB is given by

_ = yo)Go+ 1) — 5+ fo 1
B(x’”)—x_l( Bay (x—yoxzo—l)—s—ﬁo)

with
Bai=—-((z2o— Do+ D +5+Lo)((Zo+ Do +1) +s5 — o).
The compatibility condition is (A5), and leads to the following expression foy,d-P

_ Syo + o
Z0+z0=2 20 20

1-y5
_ 570+ Bo + ro/2
Yo+y=2—-—7"7.

1_Z0

A.5. Degeneration d-R — d-Py;

To obtain d-R, we need a change of variable— 1/(1+6x/2), a change of the dependent
variableA — /14 A and a gauge transformation. This is obtained througs 1+435y,/2,
zo0=—1-8z0,A = 52)\.2/2 ('L’ = nkz), ko=1 a1 = 52612/2, B1= 1+52ﬂ2/2, Y1 = —2—8)/2
and§ — 0. The system of deformation equations is (A3) and (A4), where

00,3 Aoo,Z AO

X+ —+—
Ao Aox

1/1 o0
00,3 _ =
4 _2(0 —1)

A2 _ ( 0 1 )
T\ =B+ y2(y2+z22—¥2) —V2

A0 — —y2(y2 + 22 — ¥2) y2
-2+ z22—=v)(2(y2+2—y)+ax+71) Yoyo+z2—y2)tax+T1 )’

A(x,n) =

The eigenvalues oA%/1, are 0,(a2/A2) + n. The matrixB is given by

—22 -1
B(x,n) = - - - _ - .
() (—Zz(n +2—y2) x—(2+22— )/2)>
The compatibility condition is (A5), and leads to the following expression foy d-P
T+ o

Y2
_ _ T+ B2
Yo+ Yo2=V2— 22— E
2

2t22=Y2—Yy2—
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A.6. Degeneration d-R; — d-Py;

To find d-R;, we need a change of variabhle -~ —1 + éx, a change of the dependent
variable A — I/Ag + A and a gauge transformation. This is obtained through>
n—8_12/A2—8_2y2/A2, yo = 1~|—5y2, z0 = 146822, A0 = 82)\.2 (‘L’ = nkg), o = 2+3)/2+82012,

Bo = 2+ 8y2 + 8%B, ands — 0. The system of deformation equations is (A3) and (A4),
where

00,3 Aoo,Z AO

A(x,n) = —

()C I’l) )\.2 X )\.2 +)\.2x

w3 (-1 0

A _( 0 o

Aoo,2 — ( -2 1)
—(e2z2+B2+1) O

A0 — —Y222 y2
—z2o(y2z2t+ 02+ 71T) Yozot+az+71)°
The eigenvalues oA%/1, are 0,(a2/A2) + n. The matrixB is given by
B(x.n) = X+ O2t2-r) 1)
2(2tz2—v2) 22
The compatibility condition is (A5), and leads to the same,deBuations.

A.7. Degeneration d-R — alt.d-P;;

To obtain alt.d-R, we need a change of variable — §x, a change of the dependent
variable A — —I/ix + A and elimination ofw; through a gauge transformation. This
is obtained througb’l = 8y3, 20 = 14+ 8(2/y3)z3, A = 8(2/y3)r3 (U = n)»g), ko = 1,
a1 = =2+ 8Q2/y3)as, f1 = —1+ 8(2/y3)Ba, y1 = 262 ands — 0. The system of
deformation equations is (A3) and (A4), where

AO,Z AO AOO,2
—+—+
k3x2 )»3)6 )\3

0 O
AOO,2:
(0 Vs)

0 1
0= 340+
A (Z3(23+a+a3)—y3—3 5 Ps U+O{3>
3

A02 Y323 — V3 k]
z3(¥3z3 — ¥3) —Y3Z3
The eigenvalues ofA%2/x3; are 0, y3/As. When A%? is diagonalized by a gauge
transformation using” so that

C1A2C /g = <—V3/)»3 0)

Alx,n) =

0 0
C~1A%C/x3 becomes
wtaz—p3z 3

—B3/kz—n
A3 A3y3

23+ B3 Bz — a3
+n
A3 A3
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The matrix B is given by

23+ 0 + a3 — y3y3 1
B()c,n)=(y3 O)—( 3+0+ B3 _)

0 O 23(zz3+0 taz) —y3—— 3
y3

= |k

The compatibility condition is (A5), and leads to the following expression for alt.d-P

_ 1
23+z3+Az3=1y3 <Y3+ ;) — (0 +a3)
o+ p
a3 =14+ —— 3
23
A.8. Degeneration d-R — alt.d-P;

To find alt.d-R from d-R, (the expression of A5), we need a change of variable>
§73(14-21/352x), a change of the dependent variallle> A— (ax+1)1/2hpx+y21 /21, and
a gauge transformation. This is obtained throwgh= —83(142%38%y,), 70 = —27/35z4,

ar =88+ 271387243, B, =0, y» = =253 ands — 0. The system of deformation
equations is (A3) and (A4), where
00,4 Aoo,3 Aoo,Z
A(x,n) = x2+ " x4+ "
1 0
0 -1
1
4yz + 2Z4 +204 O
< —(2y5 + 24 + 308) —Va >

y4(4y4 4+ 274 + 204) — 21 2y§ + 24+ %a4

The matrixB is given by

0 -1
B(x,n) = (ZZ4 2x +)_]4)>.

The compatibility condition is (A5), and leads to the following expression for alt.d-P

Zatza=—ou— 2y
i} T
Va+ Y4 =——.

24

A.9. Degeneration alt.d-R — alt.d-P;

To get alt.d-P from alt.d-R,, we need a change of variabte— 1 + 25x, a change of the
dependent variabld — A — y3(x?—1)1/2x3x° + (0 +a3) /2x3x and gauge transformation.
This is obtained throughs = 1+682y4, 23 = 26%24, Az = 48°%A4(x = nis), a3 = —2+428%a4,

B3 =0,y3=—1andé — 0. The system of deformation equations is (A3) and (A4), where

00,4 Aoc,3 Aoo,Z

A(x,n) = - x>+ X+
4 4 4
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g2 _ [t a4/2 —Y4
—2y424+ 2t —z4—ay/2 )"

The matrix B is given by

- (P 7).

The compatibility condition is (A5), and leads to the same alt.@dqations.

A.10. Summary

The discrete Painlés equations which are obtained from degeneration ofy,qg-d&te
considered as discrete deformation equations (Schlesinger transformations) for a linear
problem & /dx = A(x)Y of the following form:

alt.d-R: A(x) = Ax>+ Bx+C
B C
alt.d-Ry: A)=A+—+
X x
d-Ry: A(x):Ax+B+£
X
B C
d-Rv, d-Ry: AX)=A+ —— +
x—b x-c

A B C
d-R;: A(x) = + .
x—a x—b x-c

The types of singularities and the shifts of the monodromy data are as follows:

aIt.d—H aIt.d—H. d-H| d-H” d'PIV d'R/

4 242 3+1 24+1+4+1 2+1+1 1+1+1+1
+1 +1 -1 -1 +1 0 +1 -1 -1 +1 0 +1 -1 0 0
-1 0 O 0 O 0 0 O 0 0 O 0 0 0O

Remarks (1) The meaning of this list is as follows: the number in the first line expresses
the multiplicity of each singularity (Poincarank+ 1), and the numbers in the matrices are
the increments of the monodromy data corresponding to each singularity.

At each singularity (of Poincarrankr), a linear equationd/dx = A(x)Y has a unique
formal solution of the form

Y(x) ~ GY(x)e'™
}A/(x):]--i-Yl'(x—xo)-{-...

- (x —x0) 7k :
T(x) =) T ———— + Tolog(x — xo): diagonal
k=1 —k
A monodromy preserving deformation transforms the monodromy Bata (1,6;;);, j=1.2
by integer increments only under the constraint (Fuchs’ relation):
traceTp = 0.
all singularities
(2) From this table, we find that dyPis a composition of two d4R’s of different
directions:

d-Py = d-Ry o d-Py

0 +1 -1\ _(+1 0 -1 -1 +1 0
o o 0)7\o o o)°\o o o)
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