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Abstract. Starting from theq-discrete form of the Painlevé VI equation we obtain its
degenerate forms by applying the procedure of coalescence of singularities. The whole cascade
of degenerate forms is thus obtained leading to new forms for the discrete Painlevé IV and V
equations. The Lax pairs of these discrete Painlevé equations are explicitly constructed, thus
confirming their integrability.

The discovery of theq-discrete form of the Painlevé VI equation by one of us (HS) in
collaboration with Jimbo [1] has filled a gap in the domain of discrete Painlevé equations
(P’s). With this discrete equation available, we were (at last) able to produce a discrete
form for every single one of theP’s. However, the importance of this mapping goes beyond
the domain of pure taxonomy of the discreteP’s. The fact that this equation is ofq-type
rather than of difference type (with the independent variable entering in a multiplicative
rather than in an additive way) makes it a realization of aq-Garnier system [2] (in fact,
the simplest, non-trivial one). Despite the fact that the discovery ofq-PVI is very recent,
this equation has already been the object of several detailed studies. In [1] the linearization
of this equation was presented through the explicit calculation of the corresponding Lax
pair. In [3] the relation of this equation to the ‘asymmetric’q-PIII has been established and
the Schlesinger transforms of bothq-PIII andq-PVI were derived. The special solutions of
q-PVI in the form of a Casorati determinant of hypergeometric functions were given in [4].
Finally, in [5] the unified description ofq-PVI and its Schlesinger transformations (what
two of the present authors [6] have dubbed the ‘Grand Scheme’) was presented. In this
approach the bilinear form ofq-PVI is given in terms of a singleτ -function that lives in a
five-dimensional lattice. The dynamic equation has the form of a (non-autonomous) Hirota–
Miwa equation and describes the evolution in the direction of the independent variables as
well as in the direction of the parameters (under the action of the Schlesinger transforms).

In this paper we shall present yet another application of theq-PVI equation. It is in
fact known that the Painlevé equations can be used in order to produce more equations of
the same kind. Some of the procedures are already known for the continuousP’s [7, 8]:
their Schlesinger transforms can define mappings that are nothing but discreteP’s. It
goes without saying that this approach can be (and has been [9]) extended to the discrete
case in a straightforward way. Some procedures are characteristic of the discrete ones: the
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degeneracy concept we introduced in [10] is such an example. In this approach one considers
the autonomous limit of the discreteP, introduces some assumption of factorization and
simplification, and then deautonomizes the obtained form. Finally, some procedures are
from the outset common to both continuous and discreteP’s. In this class we find the
procedures based on limits or coalescences. The latter, which will be at the core of this
paper, obtain degenerate (or, equivalently, non-generic) forms ofP’s through a coalescence
of their singularities. (This, of course, explains the title of the paper. However, we must
point out that at least two of us (BG, AR) use the not quite appropriate term ‘coalescences’
to denote the degenerate forms themselves. This terminology has the merit of avoiding
confusion with the above-mentioned degeneracy concept).

Both continuous and discrete Painlevé equations are linked through a coalescence
cascade in the following pattern:

PVI → PV → {PIV ,PIII } → PII → PI .

In the case of discrete equations the coalescence process is particularly interesting since
there exist several forms for each discreteP (i.e. several discrete equations having the same
P as continuous limit). Thus, this method can be used in order to generate new d-P’s. In
what follows we shall explore systematically the degeneration through coalescence ofq-PVI .

We start from theq-discrete form of the Painlevé VI equation:

yy = (z− a)(z− b)
(z− c)(z− 1/c)

(1a)

zz̄ = (y − p)(y − q)
(y − r)(y − 1/r)

(1b)

wherey = y(n), ȳ = y(n + 1), y = y(n − 1) (similarly for z) and a = a0λ
n, b = b0λ

n,
p = p0λ

n+1/2, q = q0λ
n+1/2. The quantitiesc, r are constant and, moreover, the following

constraint must hold:a0b0 = p0q0. The first coalescence is introduced through the change
of variable y = 1 + δη and the limit δ → 0. The parameters of equation (1) are also
transformed:a0 = c(1+ δa1), b0 = (1+ δb1)/c, p0 = 1+ δp1, q0 = 1+ δq1, r = 1+ δr1.
The new independent variable isζ = nλ1 whereλ = 1+ δλ1. We thus find

η + η = − ζ + a1

z/c − 1
− ζ + b1

cz− 1
(2a)

zz̄ = (η − ζ̃ − p1)(η − ζ̃ − q1)

(η − r1)(η + r1) (2b)

where the ‘tilde’ means a shift by half a lattice spacing. The constraint now becomes
a1+ b1 = p1+ q1. Equation (2) is a discrete form of the Painlevé V equation. This can be
verified by considering the continuous limit of (2). We putλ1 = ε and at the limitε → 0
the independent variableζ goes over tot . We haveη = −t/(z− 1)+ εw. The parameters
a1 = εα, b1 = εβ, p1 = εφ, q1 = εψ , r1 = ερ and c = 1+ εγ satisfy the constraint
α + β = φ + ψ . The resulting equation forz is precisely PV:

z′′ =
(

1

2z
+ 1

z− 1

)
z′2− z

′

t
+ 2ρ2z(z− 1)2

t2

− (φ − ψ)
2

2

(z− 1)2

zt2
− 2γ (α − β)z

t
− 2γ 2z(z+ 1)

z− 1
. (3)

From d-PV we can obtain a form of d-PIV . We putz = χ/δ and similarly for the parameters
c = δ anda1 = a2/δ

2. At the limit δ→ 0 we obtain

η + η = −a2

χ
− ζ + b1

χ − 1
(4a)
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χχ̄ = −a2
η − ζ̃ − p1

η2− r2
1

(4b)

with the constraintq1 = a1 + b1 − p1. Equation (4) is indeed a d-PIV as can be assessed
by its continuous limit. Puttingχ = −α/εη + w, ζ = α(1/ε + t), anda2 = α/ε, b1 = εβ,
p1 = 0 andr1 = ερ we find (at the limitε → 0)

η′′ = η′2

2η
+ 3

2
η3− 2αtη2+

(
α2t2

2
+ 2αβ + α

)
η − 2α2ρ2

η
(5)

which is precisely PIV . The two forms of d-PV and d-PIV are obtained here for the first
time.

As is well known, d-PV has another coalescence leading to d-PIII . From (2) we can
perform this limit by puttingz = 1+ δξ while the independent variable becomesζ = δs.
The parameters of the equation are also transformed:a1 = δa3, b1 = −δa3, p1 = 1+ δp2,
q1 = −1− δp2, c = 1+ δ, r1 = 1. In the limit δ→ 0 we obtain

η + η = 2sξ + 2a3

1− ξ2
(6a)

ξ + ξ̄ = 2s̃η + 2p2

1− η2
. (6b)

Equations (6) are indeed a discrete form of the Painlevé III equation. We have first obtained
this equation in [11], where we have also given its continuous limit and its Lax pair. The
study of its Schlesinger transformations in the framework of the ‘Grand Scheme’ [6] was
presented in [5].

Both d-PIV and d-PIII have coalescences that lead to d-PII . We start with d-PIV in the
form (4) and putη = 1+ δθ andχ = 1+ δω/2. The independent variable now becomes
ζ = δ2τ/2. Moreover, we transform the parameters througha2 = −2− δa4, b1 = δ2b2/2,
p1 = 1+ δ2p3/2 andr1 = 1. We thus find (at the limitδ→ 0)

θ + θ = a4− ω − τ + b2

ω
(7a)

ω + ω̄ = a4− θ − τ̃ + p3

θ
. (7b)

Similarly, from d-PIII we introduceη = 1 + δθ , ξ = 1 + δω, s = −2 − δa4 + δ2τ ,
a3 = 2+ δa4+ δ2b2 andp2 = 2+ δa4+ δ2p3, and we obtain the same d-PII , equation (7).
The latter is an equation already obtained in [12] as the asymmetric form of d-PI. Its Lax
pair was first derived in [13]. We can easily show that this equation is in fact a discrete
form of PII . Puttingω = 1+ εw + ε2ρ, θ = 1− εw + ε2ρ (with ρ = (w2 − w′ − t)/4),
anda4 = 2, b2 = −ε3α, p3 = ε3α andτ = −1− ε2t we find (at the limitε → 0)

w′′ = 2w3+ 2wt + 4α − 1. (8)

At this point it would seem that a way to proceed in order to obtain a d-PI from (7)
would be through a symmetrization. However, this is not the proper coalescence procedure.
A different approach is based on the relation of the discreteP’s to the Schlesinger
transformations of the continuousP’s. Thus one would expect d-PIV with have two different
degenerations associated with two distinct coalescence patterns, since d-PIV is related to PV
which has degenerations to both PIII and PIV [14]. One of these degenerations was given
above, leading to the d-PII (7) itself related to PIV . The second one can also be found.
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Indeed, puttingη = r1 + δy, χ = δx, ζ = δ(z + µ), p1 = r1 − δµ, a2 = −2δ2r1 and
b1 = 2r1, we find in the limitδ→ 0

y + y = 2r1

(
1

x
+ x

)
+ z+ µ (9a)

xx̄ = 1− z̃

y
. (9b)

These equations, rewritten in terms ofx only, were first obtained in [7] and studied in detail
in [15]. They are known under the name of the alternate-d-PII equation.

Following the same spirit (the relation between d-P’s and continuousP’s), we expect
both d-PII ’s, namely (7) and alternate-d-PII (9), to have a common degeneration through
coalescence to a d-PI related to continuous PII . In the case of alternate-d-PII this degeneration
is known under the name of alternate-d-PI [7, 15]. Indeed, starting from (7) we takea4 = 2,
ω = 1+ δX, τ = δ3Z, θ = δ2Y , p3 = 0 andb2 = 1− δ2K, and obtain at theδ→ 0 limit

X +X = − Z̃
Y

(10a)

Y + Y = K −X2. (10b)

Similarly, we obtain the same equations from (9) throughx = 1+ δX, y = Y , z = δZ,
r1 = 1/2δ2 andµ = K − 1/δ2.

Let us summarize the degenerations through the coalescence cascade ofq-PVI :

q-PVI −→ d-PV −→ d-PIV −→ alt-d-PII

↓ ↓ ↓
d-PIII −→ d-PII −→ alt-d-PI

The pattern is richer than that for continuous PVI because the discrete (difference) equations
partake of both the continuous and the discrete world.

All the equations that we have derived above are integrable. This can be assessed
through the coalescence procedure since they are all degenerate forms ofq-PVI . They all
satisfy the singularity confinement criterion [16]. Finally, they do possess Lax pairs which
(for simple readability reasons) are presented in the appendix.

In this paper we have presented the degeneration ofq-PVI through a process of
coalescence of singularities and obtained the Lax pairs of the resulting equations. The
forms of the Lax pairs, and in particular the data of singularities, help us understand the
coincidence of the discrete Painlevé equations with the Schlesinger transformations of the
continuousP’s (a point that establishes the relation of this work to that of Jimbo and Miwa
[8]).

The forms of d-PV and d-PIV are quite new. In the case of d-PV it is interesting to point
out that the same equation has just been obtained [17] in a totally different setting (starting
from the similarity reduction of the lattice mKdV equation). This is the first time that a Lax
pair has been obtained for a form of d-PV and d-PIV . For instance, none is known for what
are considered the ‘standard’ forms ofq-PV and d-PIV . (But, to be fair, we must stress the
fact that these mappings are symmetrized forms of richer equations that might correspond
to higher discrete Garnier systems.)

The fact thatq-PVI is a q-discrete equation and its relation toq-PIII indicate other
possible paths of investigation. In [10] we have studied in detail the discrete forms obtained
from q-PIII by methods other than degeneration through coalescence. Their richness is most
promising since the same procedure applied toq-PVI would lead to novel equations, in
particular ofq form.
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Acknowledgments

The authors are most grateful to M Jimbo who is at the origin of the collaboration that
led to the present work. BG and AR are also deeply indebted to J Satsuma, who through
his kind invitation to visit Japan, made possible the timely completion of this work. YO
acknowledges the financial support of the Japan Ministry of Education through the Foreign
Study Program.

Appendix

In this section we shall present the results for the Lax pairs of the equations resulting from
the degeneration ofq-PVI . For completeness reasons, we start by recalling the Lax pair of
q-PVI (which was already been published in [1]).

A.1. Lax pair forq-PV I

The basic equations are

Y (qx, t) = A(x, t)

κ1(x − ta1)(x − a3)
Y (x, t) (A1)

with

A(x, t) =
(
κ1((x − y)(x − α)+ z1) κ2w(x − y)

κ1w
−1(γ x + δ) κ2((x − y)(x − β)+ z2)

)
Y (x, qt) = B(x, t)

x − qta2
Y (x, t) (A2)

B(x, t) = xI + B0(t).

The matrixB0(t) = (Bij ) is parametrized as follows:

B11 = −qκ2z̄

1− κ2z̄

(
−β + t (a1+ a2)− y

κ2z̄

)
B22 = −qκ1z̄

1− qκ1z̄

(
−ᾱ + qt (a1+ a2)− ȳ

qκ1z̄

)
B12 = qκ2z̄

1− κ2z̄
w

B21 = qκ1z̄

w(1− qκ1z̄)

(
qta1− ᾱ + qta2− ȳ

qκ1z̄

)(
ta1− β + ta2− y

κ2z̄

)
= qκ1z̄

w(1− qκ1z̄)

(
qta2− ᾱ + qta1− ȳ

qκ1z̄

)(
ta2− β + ta1− y

κ2z̄

)
.

Here

α = 1

κ1− κ2
[y−1((θ1+ θ2)t − κ1z1− κ2z2)− κ2((a1+ a2)t + a3+ a4− 2y)]

β = 1

κ1− κ2
[−y−1((θ1+ θ2)t − κ1z1− κ2z2)+ κ1((a1+ a2)t + a3+ a4− 2y)]

γ = z1+ z2+ (y + α)(y + β)+ (α + β)y − a1a2t
2− (a1+ a2)(a3+ a4)t − a3a4

δ = y−1(a1a2a3a4t
2− (αy + z1)(βy + z2))
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and

z1 = (y − ta1)(y − ta2)

qκ1z
z2 = qκ1(y − a3)(y − a4)z.

The compatibility condition

A(x, qt)B(x, t) = B(qx, t)A(x, t)
leads toq-PVI

yȳ

a3a4
= (z̄− tb1)(z̄− tb2)

(z̄− b3)(z̄− b4)

zz̄

b3b4
= (y − ta1)(y − ta2)

(y − a3)(y − a4)

w̄

w
= b4

b3

z̄− b3

z̄− b4

where

b1 = a1a2

θ1
b2 = a1a2

θ2
b3 = 1

qκ1
b4 = 1

κ2
.

A.2. Degenerationq-PV I → d-PV

We adopt the normalization(
a1 a2 a3 a4

b1 b2 b3 b4

θ1 θ2 κ1 κ2

)
=
(
a 1/a c 1/c

1/θ θ 1/qκ κ

θ 1/θ κ 1/κ

)
.

The equation d-PV is obtained throughz = p−z0−λ, w = 1− pw0, a = pa0/c, κ = pκ0,
θ = pθ0, q = pλ, t = pζ , (ζ = n λ) and δ = 1− p → 0 (and elimination ofw0 through
gauge transformation),

d

dx
Y (x, n) = A(x, n) Y (x, n) (A3)

Y (x, n+ 1) = B(x, n)Y (x, n) (A4)

where

A(x, n) = A0

λx
+ A+

λ(x − c) +
A−

λ(x − 1/c)

with

A0
11 = −

1

2κ0

(
(z0− κ0)(y − 1/c)− ζ + a0

c

)
((z0− κ0)(y − c)− c(ζ − a0))

+1

2
(z0+ ζ + κ0− 2a0)+ (θ0+ a0)(θ0− a0)

2κ0

A0
22 =

1

2κ0

(
(z0− κ0)(y − 1/c)− ζ + a0

c

)
((z0− κ0)(y − c)− c(ζ − a0))

−1

2
(z0+ ζ + κ0+ 2a0)− (θ0+ a0)(θ0− a0)

2κ0

A0
12 = y

A0
21 = −

1

4κ2
0y

[(
(z0− κ0)(y − 1/c)− ζ + a0

c

)
((z0− κ0)(y − c)− c(ζ − a0))
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−κ0(z0+ ζ )+ (a0− κ0+ θ0)(a0+ κ0− θ0)

]
×
[(
(z0− κ0)(y − 1/c)− ζ + a0

c

)
((z0− κ0)(y − c)− c(ζ − a0))

−κ0(z0+ ζ )+ (a0− κ0− θ0)(a0+ κ0+ θ0)

]
A+11 = a0− ζ − y − c

2κ0(c − 1)(c + 1)y

[
(a0− κ0+ θ0)(a0− κ0− θ0)

+
(
(z0− κ0)(y − 1/c)− ζ + a0

c

)
((z0− κ0)(y − c)− c(ζ − 2κ0− a0))

]
A+22 =

y − c
2κ0(c − 1)(c + 1)y

[
(a0− κ0+ θ0)(a0− κ0− θ0)

+
(
(z0− κ0)(y − 1/c)− ζ + a0

c

)
((z0− κ0)(y − c)− c(ζ + 2κ0− a0))

]
A+12 =

y − c
(c − 1)(c + 1)

A+21 =
(c − 1)(c + 1)

y − c A+11A
+
22

A−11 =
c2(y − 1/c)

2κ0(c − 1)(c + 1)y

[
(a0+ κ0+ θ0)(a0+ κ0− θ0)

+
(
(z0− κ0)(y − 1/c)− ζ + 2κ0+ a0

c

)
((z0− κ0)(y − c)− c(ζ − a0))

]
A−22 = a0+ ζ − c2(y − 1/c)

2κ0(c − 1)(c + 1)y

[
(a0+ κ0+ θ0)(a0+ κ0− θ0)

+
(
(z0− κ0)(y − 1/c)− ζ + 2κ0+ a0

c

)
((z0− κ0)(y − c)− c(ζ − a0))

]
A−12 =

c2(y − 1/c)

(c − 1)(c + 1)

A−21 =
(c − 1)(c + 1)

c2(y − 1/c)
A−11A

−
22

and

A∞ = −A0− A+ − A− =
(−κ0 0

0 κ0

)
.

The eigenvalues ofA0/λ are(−a0+θ0)/λ, (−a0−θ0)/λ, and those ofA±/λ are 0,(a0/λ)∓n.
The matrixB is given by

B11 = 1

x − c [(z0+ ζ + θ0)(z0+ ζ − θ0)y
−1− (z0+ κ0)(z0+ ζ − κ0+ a0)c

−1

−(z0+ κ0)(z0− ζ + κ0− a0)c + (z0− κ0)(z0+ κ0)y

+2κ0(z̄0+ κ0+ λ)(x − c−1− c + y)]
B22 = 1

ȳ(x − c)
[

2κ0(z̄0− κ0)x − (a0+ θ0)(a0− θ0)− κ0(z̄0+ ζ̄ − κ0)

−
(
(z̄0− κ0)(ȳ − 1/c)− ζ̄ + a0

c

)
((z̄0− κ0)(ȳ − c)− c(ζ̄ − a0))

]
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B12 = − 2κ0

x − c
B21 = 1

2κ0yȳ(x − c)
[
(a0+ κ0+ θ0)(a0+ κ0− θ0)

+
(
(z̄0− κ0)(ȳ − 1/c)− ζ̄ + 2κ0+ a0

c

)
((z̄0− κ0)(ȳ − c)− c(ζ̄ − a0))

]
×
[
(a0− κ0+ θ0)(a0− κ0− θ0)+ 2(z̄0− z0+ λ)(y − c)

+
(
(z0+ κ0)(y − 1/c)− ζ − 2κ0+ a0

c

)
((z0+ κ0)(y − c)− c(ζ − a0))

]
.

The compatibility condition

d

dx
B(x, n) = A(x, n+ 1)B(x, n)− B(x, n)A(x, n) (A5)

leads to d-PV in the form

z̄0+ z0+ λ = ζ + a0

yc − 1
+ ζ − a0

y/c − 1

yȳ = (z̄0+ ζ̄ + θ0)(z̄0+ ζ̄ − θ0)

(z̄0− κ0)(z̄0+ λ+ κ0)
.

A.3. Degeneration d-PV → d-PIV

To get d-PIV , we need a change of variablex → x/c and a gauge transformation. This
is obtained throughn → n + β/λ + δ−2γ1/2λ, y = y1/δ, c = δ, θ0 = δ−2γ1/2,
a0 = α1− β1− δ−2γ1/2 andδ→ 0.

The system of deformation equations is (A3) and (A4), where

A(x, n) = A0,2

λx2
+ A

0

λx
+ A1

λ(x − 1)

with

A
0,2
11 =

1

2κ0
((z0− κ0)(y1− 1)− ζ − α1)((z0− κ0)y1− γ1)− γ1(α1− β1+ κ0)

2κ0

A
0,2
22 = −

1

2κ0
((z0− κ0)(y1− 1)− ζ − α1)((z0− κ0)y1− γ1)+ γ1(α1− β1− κ0)

2κ0

A
0,2
12 = −y1

A
0,2
21 = −

1

y1
A

0,2
11A

0,2
22

A1
11 = −

y1− 1

2κ0y1
[((z0− κ0)y1− z0− ζ − α1− κ0)((z0− κ0)y1− γ1)− γ1(α1− β1+ κ0)]

A1
22 =

y1− 1

2κ0y1
[((z0− κ0)y1− z0− ζ − α1− κ0)((z0− κ0)y1− γ1)− γ1(α1− β1+ κ0)]

+α1+ ζ
A1

12 = y1− 1

A1
21 =

1

y1− 1
A1

11A
1
22
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A0 = −A1+
(
κ0 0
0 −κ0

)
and A∞ = −A0− A1 =

(−κ0 0
0 κ0

)
.

The eigenvalues ofA1/λ are 0,(α1/λ)+n, and those ofA0,2/λ are 0,−(γ1/λ). WhenA0,2

is diagonalized by a gauge transformation withC as

C−1A0,2C/λ =
(−γ1/λ 0

0 0

)
the diagonal parts ofC−1A0C/λ are(−β1/λ− n ∗

∗ (β1− α1)/λ

)
.

The matrixB is given by

B11 = 1

x
[γ1(z0+ ζ + β1)y1

−1− (z0+ κ0)(z0+ ζ + α1+ γ1− κ0)+ (z0− κ0)(z0+ κ0)y1

+2κ0(z̄0+ κ0+ λ)(x + y1− 1)]

B22 = 2κ0(z̄0− κ0)− ((z̄0− κ0)(ȳ1− 1)− ζ̄ − α1)((z̄0− κ0)ȳ1− γ1)− γ1(α1− β1− κ0)

x
B12 = −2κ0

B21 = 1

2κ2
0y1ȳ1

[γ1(z0+ ζ + β1)y1
−1

−(z0+ κ0)(z0+ ζ + α1+ γ1− κ0)+ (2κ0(z̄0+ λ)+ z0
2+ κ0

2)y1]

×[((z̄0− κ0)ȳ1− z̄0− ζ̄ − α1− κ0)((z̄0− κ0)ȳ1− γ1)− γ1(α1− β1+ κ0)].

The compatibility condition is (A5), and we obtain the following expression for d-PIV

z̄0+ z0+ λ = ζ + α1

y1− 1
+ γ1

y1

y1ȳ1 = γ1(z̄0+ ζ̄ + β0)

(z̄0− κ0)(z̄0+ λ+ κ0)
.

A.4. Degeneration d-PV → d-PIII

To obtain d-PIII , we need a change of variablex → 1+ δx and a gauge transformation.
This is obtained throughy = 1+ δy0, λ = δλ0 (s = nλ0), c = 1+ δ, κ0 = 1, a0 = δα0,
θ0 = 1− δβ0 andδ→ 0. The system of deformation equations is (A3) and (A4), where

A(x, n) = A∞,2

λ0
+ A+

λ0(x − 1)
+ A−

λ0(x + 1)

A∞,2 =
(

1 0
0 −1

)

A+ = (y0− 1)(y0+ 1)

2

 z0− 1+ s + β0

y0+ 1
+ 2β0+ 2α0

(y0− 1)(y0+ 1)
− 1

y0− 1

A+21 −z0+ 1− s + β0

y0− 1


with

A+21 = (y0− 1)

(
z0− 1+ s + β0

y0+ 1
+ 2β0+ 2α0

(y0− 1)(y0+ 1)

)(
z0− 1+ s + β0

y0− 1

)
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A− = (y0− 1)(y0+ 1)

2

−z0+ 1− s + β0

y0+ 1

1

y0+ 1

A−21 z0− 1+ s + β0

y0− 1
+ −2β0+ 2α0

(y0− 1)(y0+ 1)


A−21 = −(y0+ 1)

(
z0− 1+ s + β0

y0− 1
+ −2β0+ 2α0

(y0− 1)(y0+ 1)

)(
z0− 1+ s + β0

y0+ 1

)
A∞ = −A+ − A− =

(−β0− α0 1
A∞21 β0− α0

)
A∞21 = ((z0− 1)y0+ s + β0)((z0− 1)y0+ s − β0)− (z0− 1)(z0− 2α0− 1).

The eigenvalues ofA±/λ0 are 0,(α0/λ0)∓ n. The matrixB is given by

B(x, n) = 1

x − 1

(
(x − y0)(z̄0+ 1)− s + β0 −1

B21 (x − ȳ0)(z̄0− 1)− s̄ − β0

)
with

B21 = −((z̄0− 1)(ȳ0+ 1)+ s̄ + β0)((z̄0+ 1)(y0+ 1)+ s − β0).

The compatibility condition is (A5), and leads to the following expression for d-PIII :

z̄0+ z0 = 2
sy0+ α0

1− y2
0

ȳ0+ y0 = 2
s̃z̄0+ β0+ λ0/2

1− z̄2
0

.

A.5. Degeneration d-PIV → d-PII

To obtain d-PII , we need a change of variablex → 1/(1+δx/2), a change of the dependent
variableA→ I/λ+A and a gauge transformation. This is obtained throughy1 = 1+δy2/2,
z0 = −1−δz2, λ = δ2λ2/2 (τ = nλ2), κ0 = 1, α1 = δ2α2/2, β1 = 1+δ2β2/2, γ1 = −2−δγ2

andδ→ 0. The system of deformation equations is (A3) and (A4), where

A(x, n) = A∞,3

λ2
x + A

∞,2

λ2
+ A0

λ2x

A∞,3 = 1

2

(
1 0
0 −1

)
A∞,2 =

(
0 1

(α2− β2+ y2(y2+ z2− γ2)) −γ2

)
A0 =

( −y2(y2+ z2− γ2) y2

−(y2+ z2− γ2)(y2(y2+ z2− γ2)+ α2+ τ) y2(y2+ z2− γ2)+ α2+ τ
)
.

The eigenvalues ofA0/λ2 are 0,(α2/λ2)+ n. The matrixB is given by

B(x, n) =
( −z̄2 −1
−z̄2(ȳ2+ z̄2− γ2) x − (ȳ2+ z̄2− γ2)

)
.

The compatibility condition is (A5), and leads to the following expression for d-PII :

z̄2+ z2 = γ2− y2− τ + α2

y2

ȳ2+ y2 = γ2− z̄2− τ + β2

z̄2
.
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A.6. Degeneration d-PIII → d-PII

To find d-PII , we need a change of variablex → −1+ δx, a change of the dependent
variableA → I/λ0 + A and a gauge transformation. This is obtained throughn →
n−δ−12/λ2−δ−2γ2/λ2, y0 = 1+δy2, z0 = 1+δz2, λ0 = δ2λ2 (τ = nλ2), α0 = 2+δγ2+δ2α2,
β0 = 2+ δγ2 + δ2β2 and δ → 0. The system of deformation equations is (A3) and (A4),
where

A(x, n) = A∞,3

λ2
x + A

∞,2

λ2
+ A0

λ2x

A∞,3 =
(−1 0

0 0

)
A∞,2 =

( −γ2 1
−(y2z2+ β2+ τ) 0

)
A0 =

( −y2z2 y2

−z2(y2z2+ α2+ τ) y2z2+ α2+ τ
)
.

The eigenvalues ofA0/λ2 are 0,(α2/λ2)+ n. The matrixB is given by

B(x, n) =
(−x + (y2+ z̄2− γ2) 1

z̄2(y2+ z̄2− γ2) z̄2

)
.

The compatibility condition is (A5), and leads to the same d-PII equations.

A.7. Degeneration d-PIV → alt.d-PII

To obtain alt.d-PII , we need a change of variablex → δx, a change of the dependent
variableA → −I/λx + A and elimination ofw1 through a gauge transformation. This
is obtained throughy1 = δy3, z0 = 1+ δ(2/γ3)z3, λ = δ(2/γ3)λ3 (σ = nλ3), κ0 = 1,
α1 = −2 + δ(2/γ3)α3, β1 = −1 + δ(2/γ3)β3, γ1 = 2δ2 and δ → 0. The system of
deformation equations is (A3) and (A4), where

A(x, n) = A0,2

λ3x2
+ A0

λ3x
+ A

∞,2

λ3

A∞,2 =
(

0 0
0 γ3

)
A0 =

(
0 1

z3(z3+ σ + α3)− γ3
z3+ σ + β3

y3
σ + α3

)

A0,2 =
(

y3z3− γ3 −y3

z3(y3z3− γ3) −y3z3

)
.

The eigenvalues ofA0,2/λ3 are 0, γ3/λ3. When A0,2 is diagonalized by a gauge
transformation usingC so that

C−1A0,2C/λ3 =
(−γ3/λ3 0

0 0

)
C−1A0C/λ3 becomes−β3/λ3− n z3+ α3− β3

λ3
− γ3

λ3y3
z3+ β3

λ3
+ n β3− α3

λ3

 .
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The matrixB is given by

B(x, n) =
(
γ3 0
0 0

)
−
(

z̄3+ σ̄ + α3− γ3y3 1

z̄3(z̄3+ σ̄ + α3)− γ3
z̄3+ σ̄ + β3

ȳ3
z̄3

)
1

x
.

The compatibility condition is (A5), and leads to the following expression for alt.d-PII :

z̄3+ z3+ λ3 = γ3

(
y3+ 1

y3

)
− (σ + α3)

ȳ3y3 = 1+ σ̄ + β3

z̄3
.

A.8. Degeneration d-PII → alt.d-PI

To find alt.d-PI from d-PII (the expression of A5), we need a change of variablex →
δ−3(1+21/3δ2x), a change of the dependent variableA→ A−(α2+τ)I/2λ2x+γ2I/2λ2 and
a gauge transformation. This is obtained throughy2 = −δ−3(1+21/3δ2y4), z2 = −2−1/3δz4,
α2 = δ−6 + 2−1/3δ−2α3, β2 = 0, γ2 = −2δ−3 and δ → 0. The system of deformation
equations is (A3) and (A4), where

A(x, n) = A∞,4

λ2
x2+ A

∞,3

λ2
x + A

∞,2

λ2

A∞,4 =
(

1 0
0 −1

)
A∞,3 =

(
0 1

4y2
4 + 2z4+ 2α4 0

)
A∞,2 =

( −(2y2
4 + z4+ 1

2α4) −y4

y4(4y2
4 + 2z4+ 2α4)− 2τ 2y2

4 + z4+ 1
2α4

)
.

The matrixB is given by

B(x, n) =
(

0 −1
2z̄4 2(x + ȳ4)

)
.

The compatibility condition is (A5), and leads to the following expression for alt.d-PI:

z̄4+ z4 = −α4− 2y2
4

ȳ4+ y4 = − τ
z̄4
.

A.9. Degeneration alt.d-PII → alt.d-PI

To get alt.d-PI from alt.d-PII , we need a change of variablex → 1+ 2δx, a change of the
dependent variableA→ A−γ3(x

2−1)I/2λ3x
2+ (σ +α3)/2λ3x and gauge transformation.

This is obtained throughy3 = 1+δ2y4, z3 = 2δ2z4, λ3 = 4δ3λ4(τ = nλ4), α3 = −2+2δ2α4,
β3 = 0, γ3 = −1 andδ→ 0. The system of deformation equations is (A3) and (A4), where

A(x, n) = A∞,4

λ4
x2+ A

∞,3

λ4
x + A

∞,2

λ4

A∞,4 =
(

1 0
0 −1

)
A∞,3 =

(
0 1
−2z4 0

)
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A∞,2 =
(

z4+ α4/2 −y4

−2y4z4+ 2τ −z4− α4/2

)
.

The matrixB is given by

B(x, n) =
(−2(x + ȳ4) −1

2z̄4 0

)
.

The compatibility condition is (A5), and leads to the same alt.d-PI equations.

A.10. Summary

The discrete Painlevé equations which are obtained from degeneration of q-PVI are
considered as discrete deformation equations (Schlesinger transformations) for a linear
problem dY/dx = A(x)Y of the following form:

alt.d-PI: A(x) = Ax2+ Bx + C
alt.d-PII : A(x) = A+ B

x
+ C

x2

d-PII : A(x) = Ax + B + C
x

d-PIV , d-PIII : A(x) = A+ B

x − b +
C

x − c
d-PV: A(x) = A

x − a +
B

x − b +
C

x − c .
The types of singularities and the shifts of the monodromy data are as follows:

alt.d-PI alt.d-PII d-PII d-PIII d-PIV d-PV

4 2+ 2 3+ 1 2+ 1+ 1 2+ 1+ 1 1+ 1+ 1+ 1(+1
−1

) (+1 −1
0 0

) (−1 +1
0 0

) (
0 +1 −1
0 0 0

) (−1 +1 0
0 0 0

) (+1 −1 0 0
0 0 0 0

)

Remarks. (1) The meaning of this list is as follows: the number in the first line expresses
the multiplicity of each singularity (Poincaré rank+1), and the numbers in the matrices are
the increments of the monodromy data corresponding to each singularity.

At each singularity (of Poincaré rankr), a linear equation dY/dx = A(x)Y has a unique
formal solution of the form

Y (x) ∼ GŶ (x) eT (x)

Ŷ (x) = 1+ Y1 · (x − x0)+ · · ·
T (x) =

r∑
k=1

T−k
(x − x0)

−k

−k + T0 log(x − x0): diagonal.

A monodromy preserving deformation transforms the monodromy dataT0 = (t0,iδij )i,j=1,2

by integer increments only under the constraint (Fuchs’ relation):∑
all singularities

traceT0 = 0.

(2) From this table, we find that d-PIII is a composition of two d-PIV ’s of different
directions:

d-PIII = d̃-PIV ◦ d-PIV(
0 +1 −1
0 0 0

)
=
(+1 0 −1

0 0 0

)
◦
(−1 +1 0

0 0 0

)
.
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